Design of a Walking Assistance Lower Limb Exoskeleton for Paraplegic Patients and Hardware Validation Using CoP
نویسندگان
چکیده
The design of an assistive lower limb exoskeleton robot for paraplegic patients that can measure the centre of pressure is presented. In contrast with most biped walking robots, the centre of pressure (CoP) or zero moment point (ZMP) has not been actively used in the operation of exoskeleton robots. In order to measure CoP in our exoskeleton robot, two kinds of force sensor units are installed in the exoskeleton: low profile force sensors in foot modules to measure the human weight transferred to the ground and a load cell at the shank frame to measure the supporting force. The CoP of the exoskeleton robot is calculated from the above force sensors, an inclinometer at the waist, and the positions of 14 DOF exoskeleton joints with an algorithm to change the fixed pivot using a foot contact sensor. Experiments on an able‐bodied person wearing the designed exoskeleton and walking on the ground are performed to validate the designed hardware system. Through the experiments, the trajectory of the CoP of the exoskeleton with a wearer are calculated based on the proposed algorithm and it is compared with the value measured by a commercial pressure measurement system.
منابع مشابه
Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking
“I will never forget the emotion of my first steps [...],” Françoise, first user during initial trials of the exoskeleton ATALANTE [1] discussed in this paper. “I am tall again!”, Sandy, the fourth user after standing up in the exoskeleton. In these early tests, complete paraplegic patients have dynamically walked up to 10 m without crutches or other assistance using a feedback control method o...
متن کاملDesign and Evaluation of the Unmanned Technology Research Center Exoskeleton Implementing the Precedence Walking Assistance Mechanism
Assistance of the operator’s walking ability while carrying a load is a challenging area in lower limb exoskeletons. We implement an exoskeleton called the Unmanned Technology Research Center Exoskeleton (UTRCEXO), which enables the operator to walk with a load more comfortably. The UTRCEXO makes use of two types of DC motor to assist the hip and knee joints. The UTRCEXO detects the operator’s ...
متن کاملCompact Hip-Force Sensor for a Gait-Assistance Exoskeleton System
In this paper, we propose a compact force sensor system for a hip-mounted exoskeleton for seniors with difficulties in walking due to muscle weakness. It senses and monitors the delivered force and power of the exoskeleton for motion control and taking urgent safety action. Two FSR (force-sensitive resistors) sensors are used to measure the assistance force when the user is walking. The sensor ...
متن کاملInfluence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton
A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unkn...
متن کاملThe Effect of Spatial and Temporal Parameters on the Energy Expenditure of Orthotic Gait of Paraplegic
Objectives: Although for those spinal cord injury (SCI) patients with paralysis of the legs but not at arms, the primary means of mobility post injury is the manual wheelchair, there are many physiological and psychological advantages to standing and walking, such as improvement in respiratory function, lower limb weight bearing and preventing osteoporosis, pressure sores prevention etc. High m...
متن کامل